Options
Vidya Niranjan
Loading...
Preferred name
Vidya Niranjan
Official Name
Vidya Niranjan
Main Affiliation
RV College of Engineering
Email
Scopus Author ID
6603234656
5 results
Now showing 1 - 5 of 5
- PublicationMitogen activated protein kinase-1 and cell division control protein-42 are putative targets for the binding of novel natural lead molecules: a therapeutic intervention against Candida albicans(2020)
;Gopal D ;Muddebihalkar A.G ;Skariyachan S ;Akshay Uttarkar C ;Kaveramma P ;Praveen U ;Shankar R.R ;Venkatesan TCandida albicans, fungal yeast causes several lethal infections in immune-suppressed patients and recently emerged as drug-resistant pathogens worldwide. The present study aimed to screen putative drug targets of Candia albicans and to study the binding potential of novel natural lead compounds towards these targets by computational virtual screening and molecular dynamic (MD) simulation. Through extensive analysis of mitogen-activated protein kinase (MAPK) signalling pathways, mitogen-activated protein kinase-1 (HOG1) and cell division control protein-42 (CDC42) genes were prioritized as putative targets based on their virulent functions. The three-dimensional structures of these genes, not available in their native forms, were computationally modeled and validated. 76 lead molecules from various natural sources were screened and their drug likeliness and pharmacokinetic features were predicted. Among these ligands, two lead molecules that demonstrated ideal drug-likeliness and pharmacokinetic features were docked against HOG1 and CDC42 and their binding potential was compared with the binding of conventional drug Fluconazole with their usual target. The prediction was computationally validated by MD simulation. The current study revealed that Cudraxanthone-S present in Cudrania cochinchinensis and Scutifoliamide-B present in Piper scutifolium exhibited ideal drug likeliness, pharmacokinetics and binding potential to the prioritized targets in comparison with the binding of Fluconazole and their usual target. MD simulation showed that CDC42-Cudraxanthone-S and HOG1-Scutifoliamide-B complexes were exhibited stability throughout MD simulation. Thus, the study provides significant insight into employing HOG1 and CDC42 of MAPK as putative drug targets of C. albicans and Cudraxanthone-S and Scutifoliamide-B as potential inhibitors for drug discovery. Communicated by Ramaswamy H. Sarma. � 2019 Informa UK Limited, trading as Taylor & Francis Group.Scopus© Citations 8 - PublicationStructural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies- deciphering the scope of repurposed drugs(2020)
;Skariyachan S ;Gopal D ;Chakrabarti S ;Kempanna P ;Uttarkar A ;Muddebihalkar A.GThe repurposing of FDA approved drugs is presently receiving attention for COVID-19 drug discovery. Previous studies revealed the binding potential of several FDA-approved drugs towards specific targets of SARS-CoV-2; however, limited studies are focused on the structural and molecular basis of interaction of these drugs towards multiple targets of SARS-CoV-2. The present study aimed to predict the binding potential of six FDA drugs towards fifteen protein targets of SARS-CoV-2 and propose the structural and molecular basis of the interaction by molecular docking and dynamic simulation. Based on the literature survey, fifteen potential targets of SARS-CoV-2, and six FDA drugs (Chloroquine, Hydroxychloroquine, Favipiravir, Lopinavir, Remdesivir, and Ritonavir) were selected. The binding potential of individual drug towards the selected targets was predicted by molecular docking in comparison with the binding of the same drugs with their usual targets. The stabilities of the best-docked conformations were confirmed by molecular dynamic simulation and energy calculations. Among the selected drugs, Ritonavir and Lopinavir showed better binding towards the prioritized targets with minimum binding energy (kcal/mol), cluster-RMS, number of interacting residues, and stabilizing forces when compared with the binding of Chloroquine, Favipiravir, and Hydroxychloroquine, later drugs demonstrated better binding when compared to the binding with their usual targets. Remdesvir showed better binding to the prioritized targets in comparison with the binding of Chloroquine, Favipiravir, and Hydroxychloroquine, but showed lesser binding potential when compared to the interaction between Ritonavir and Lopinavir and the prioritized targets. The structural and molecular basis of interactions suggest that the FDA drugs can be repurposed towards multiple targets of SARS-CoV-2, and the present computational models provide insights on the scope of repurposed drugs against COVID-19. � 2020 Elsevier Ltd - PublicationCarbon fullerene acts as potential lead molecule against prospective molecular targets of biofilm-producing multidrug-resistant Acinetobacter baumanni and Pseudomonas aerugenosa: computational modeling and MD simulation studies(2021)
;Skariyachan S ;Gopal D ;Kadam S.P ;Muddebihalkar A.G ;Uttarkar AThis study aimed to screen putative drug targets associated with biofilm formation of multidrug-resistant Acinetobacter baumannii and Pseudomonas areugenosa and prioritize carbon nano-fullerene as potential lead molecule by structure-based virtual screening. Based on the functional role, 36 and 83 genes that are involved in biofilm formation of A. baumannii and P. areugenosa respectively were selected and metabolic network was computationally constructed. The genes that lack three-dimensional structures were predicted and validated. Carbon nano-fullerene selected as lead molecule and their drug-likeliness and pharmacokinetics properties were computationally predicted. The binding potential of carbon nano-fullerene toward selected drug targets was modeled and compared with the binding of conventional drugs, doripenem, and polymyxin-B with their usual targets. The stabilities of four best-docked complexes were confirmed by molecular dynamic (MD) simulation. This study suggested that selected genes demonstrated relevant interactions in the constructed metabolic pathways. Carbon fullerene exhibited significant binding abilities to most of the prioritized targets in comparison with the binding of last-resort antibiotics and their usual target. The four best ligand�receptor interactions predicted by molecular docking revealed that stability throughout MD simulation. Notably, carbon fullerene exhibited profound binding with outer membrane protein (OmpA) and ribonuclease-HII (rnhB) of A. baumannii and 2-heptyl-4(1H)-quinolone synthase (pqsBC) and chemotaxis protein (wspA) of P. aeruginosa. Thus, the current study suggested that carbon fullerene was probably used as potential lead molecules toward selected targets of A. baumannii and P. aeruginosa and the applied aspects probably scaled up to design promising lead molecules toward these pathogens. Communicated by Ramaswamy H. Sarma. � 2020 Informa UK Limited, trading as Taylor & Francis Group.Scopus© Citations 4 - PublicationUnderstanding the Xylooligosaccharides Utilization Mechanism of Lactobacillus brevis and Bifidobacterium adolescentis: Proteins Involved and Their Conformational Stabilities for Effectual Binding(2022)
;Khangwal I ;Skariyachan S ;Uttarkar A ;Muddebihalkar A.G; Shukla P.Xylooligosaccharides having various degrees of polymerization such as xylobiose, xylotriose, and xylotetraose positively affect human health by interacting with gut proteins. The present study aimed to identify proteins present in gut microflora, such as xylosidase, xylulokinase, etc., with the help of retrieved whole-genome annotations and find out the mechanistic interactions of those with the above substrates. The 3D structures of proteins, namely Endo-1,4-beta-xylanase B (XynB) from Lactobacillus brevis and beta-d-xylosidase (Xyl3) from Bifidobacterium adolescentis, were computationally predicted and validated with the help of various bioinformatics tools. Molecular docking studies identified the effectual binding of these proteins to the xylooligosaccharides, and the stabilities of the best-docked complexes were analyzed by molecular dynamic simulation. The present study demonstrated that XynB and Xyl3 showed better effectual binding toward Xylobiose with the binding energies of ? 5.96 kcal/mol and ? 4.2 kcal/mol, respectively. The interactions were stabilized by several hydrogen bonding having desolvation energy (? 6.59 and ? 7.91). The conformational stabilities of the docked complexes were observed in the four selected complexes of XynB�xylotriose, XynB�xylotetraose, Xyl3�xylobiose, and Xyn3�xylotriose by MD simulations. This study showed that the interactions of these four complexes are stable, which means they have complex metabolic activities among each other. Extending these studies of understanding, the interaction between specific probiotics enzymes and their ligands can explore the detailed design of synbiotics in the future. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Scopus© Citations 6 - PublicationStructural insights on the interaction potential of natural leads against major protein targets of SARS-CoV-2: Molecular modelling, docking and dynamic simulation studies(2021)
;Skariyachan S ;Gopal D ;Muddebihalkar A.G ;Uttarkar AThough significant efforts are in progress for developing drugs and vaccines against COVID-19, limited therapeutic agents are available currently. Thus, it is essential to undertake COVID-19 research and to identify therapeutic interventions in which computational modeling and virtual screening of lead molecules provide significant insights. The present study aimed to predict the interaction potential of natural lead molecules against prospective protein targets of SARS-CoV-2 by molecular modeling, docking, and dynamic simulation. Based on the literature survey and database search, fourteen molecular targets were selected and the three targets which lack the native structures were computationally modeled. The drug-likeliness and pharmacokinetic features of ninety-two natural molecules were predicted. Four lead molecules with ideal drug-likeliness and pharmacokinetic properties were selected and docked against fourteen targets, and their binding energies were compared with the binding energy of the interaction between Chloroquine and Hydroxychloroquine to their usual targets. The stabilities of selected docked complexes were confirmed by MD simulation and energy calculations. Four natural molecules demonstrated profound binding to most of the prioritized targets, especially, Hyoscyamine and Tamaridone to spike glycoprotein and Rotiorinol-C and Scutifoliamide-A to replicase polyprotein-1ab main protease of SARS-CoV-2 showed better binding energy, conformational and dynamic stabilities compared to the binding energy of Chloroquine and its usual target glutathione-S-transferase. The aforementioned lead molecules can be used to develop novel therapeutic agents towards the protein targets of SARS-CoV-2, and the study provides significant insight for structure-based drug development against COVID-19. � 2021 Elsevier LtdScopus© Citations 18