Options
Deciphering the interaction mechanism of natural actives against larval proteins of Aedes aegypti to identify potential larvicides: a computational biology analysis
Journal
Journal of Biomolecular Structure and Dynamics
Date Issued
2023
Author(s)
Abstract
Aedes aegypti is the target for repellents to curb incidences of vector-borne diseases. Stopping breeding of this mosquito species at its larval stages helps in controlling spread of insect-borne diseases. Therefore, the present study focused on deciphering the mechanism of interaction of selected natural actives against larval proteins of A. aegypti to identify potential natural alternative larvicides. 65 larval proteins were identified from literature, whose structures were modelled and validated using RaptorX and ProCheck. 11 natural actives were selected for predicting their ligand properties and toxicities via Toxicity Estimation Software Tool and ProTox-II. Molecular docking studies were carried out using POAP followed by 100 ns molecular dynamic simulation studies for top three best docked complexes to better understand the robustness of docking, complex stabilities and molecular mechanisms of interactions. Toxicity predictions revealed that 6 molecules belonged to toxicity class 4, and five to toxicity class 5, implying that they were all safe to use. Complexes goniothalamin-translation elongation factor (?10 kcal/mol), andrographolide-acetyl-CoA C-myristoyltransferase (?9.2 kcal/mol) and capillin-translation elongation factor (?8.4 kcal/mol) showed best binding energies. When simulated, capillin-translation elongation factor showed most stability, while the remaining two also evidenced robust docking. Evolutionary studies for top two larval proteins disclosed 100 other insect species in which these proteins can be targeted using various larvicides. Protein-protein interaction network analysis revealed several protein pathways that might be affected due to aforesaid naturals. Therefore, this study provides computational insights into the molecular interaction of naturals against larval proteins, acting as potential natural larvicides. Communicated by Ramaswamy H. Sarma. � 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.